In recent years, the number of wireless sensor network deployments for real life applications has rapidly increased. Still, the energy problem remains one of the major barriers somehow preventing the complete exploitation of this technology. Sensor nodes are typically powered by batteries with a limited lifetime and, even when additional energy can be harvested from the external environment (e.g. through solar cells or piezo-electric mechanisms), it remains a limited resource to be consumed judiciously. Efficient energy management is thus a key requirement for a credible design of a wireless sensor network.
The design of sustainable wireless sensor networks is a very challenging issue. On the one hand, energy-constrained sensors are expected to run autonomously for long periods. However, it may be cost-prohibitive to replace exhausted batteries or even impossible in hostile environments. On the other hand, unlike other networks, WSNs are designed for specific applications which range from small-size to large-scale monitoring. Thus, any WSN deployment has to satisfy a set of requirements that differs from one application to another.
The objective of SCOTT is to develop an advanced wireless intelligent sensors strategy based on energy harvesting systems that will offer many system engineering and operational advantages which can offer cost-effective solutions for a specific application in a domain.